Select Page

Crumpled graphene could enable fast, simple and sensitive biosensors

Researchers at the University of Illinois at Urbana-Champaign have found that crumpling graphene makes it more than ten thousand times more sensitive to DNA by creating electrical “hot spots”. This discovery could assist in addressing a known issue of...

Cardea Bio and Nanosens Innovations merger-acquisition finalized

Cardea Bio (formerly: Nanomedical Diagnostics) and Nanosens Innovations have joined forces to accelerate the development of the Genome Sensor: the world’s first DNA search engine that runs on CRISPR-Chip technology.Cardea has announced the finalization of their...

University of Illinois team finds that defects in graphene membranes may improve biomolecule transport

Researchers at the University of Illinois examined how tiny defects in graphene membranes, formed during fabrication, could be used to improve molecule transport. They found that the defects make a big difference in how molecules move along a membrane surface. Instead...

Team finds that an electric field applied to a tiny hole in a graphene membrane could compress water molecules

Researchers at the University of Illinois at Urbana-Champaign have developed new theories regarding the compression of water under a high-gradient electric field. They found that a high electric field applied to a tiny hole in a graphene membrane would compress the...

Graphene-based sensors to advance diagnostic genome sequencing

University of Arkansas researchers are working together, with support from the National Institutes of Health, to make that prospect of graphene-based sensors that sequence a patient’s genome to predict diseases more realistic. Steve Tung, professor of mechanical...